Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Clin Appl Thromb Hemost ; 28: 10760296221120422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35996317

RESUMEN

INTRODUCTION: Protease activated receptors 1 (PAR1) and 4 (PAR4) agonists are used to study platelet activation. Data on platelet activation are extrapolated across experimental settings. C1-inhibitor (C1INH) is a protease inhibitor present in plasma but not in isolated platelet suspensions. Here we show that C1INH affects platelet activation through PAR1 and PAR4 agonists. METHODS: Platelets were isolated from healthy donor whole blood and then labeled with anti-CD62P and PAC1 antibodies. The platelet suspensions were exposed to PAR1 agonists SFLLRN, TFLLR and TFLLRN; PAR4 agonists AYPGKF and GYPGQV; ADP and thrombin. Flow-cytometric measurements were performed in 5, 10 and 15 min after activation. RESULTS: 0.25 mg/ml C1INH addition made platelets to faster expose CD62P and glycoprotein IIb/IIIa complex after activation with PAR1 agonists. Conversely, C1INH addition led to inhibition of platelet activation with PAR4 agonists and thrombin. Activation with ADP was not affected by C1INH. CONCLUSIONS: Our results suggest that C1INH can modify platelet activation in the presence of synthetic PAR agonists used in platelet research. These observations may be relevant to the development of new methods to assess platelet function.


Asunto(s)
Proteína Inhibidora del Complemento C1 , Receptor PAR-1 , Receptores de Trombina , Plaquetas , Proteína Inhibidora del Complemento C1/fisiología , Humanos , Activación Plaquetaria , Agregación Plaquetaria , Receptor PAR-1/fisiología , Receptores de Trombina/agonistas , Receptores de Trombina/fisiología , Trombina/farmacología
2.
Mol Carcinog ; 61(6): 527-536, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35338515

RESUMEN

Coagulation proteases and the generation of thrombin are increased in tumors. In addition, chemotherapeutic agents commonly used to treat malignant cancers can exacerbate cancer-associated thromboses. Thrombin can modify tumor cell behavior directly through the activation of protease-activated receptors (PAR) or indirectly by generating fibrin matrices. In addition to its role in generating fibrin to promote hemostasis, thrombin acts directly on multiple effector cells of the immune system impacting both acute and chronic inflammatory processes. Thrombin-mediated release of interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 leads to the accumulation of multiple tumor-infiltrating immunosuppressive cell populations including myeloid derived suppresser cells, M2-like macrophages, and T regulatory cells. Ablation of PAR-1 from the tumor microenvironment, but not the tumor, has been shown to dramatically reduce tumor growth and metastasis in multiple tumor models. Thrombin-activated platelets release immunosuppressive cytokines including transforming growth factor-ß that can inhibit natural killer cell activity, helping tumor cells to evade host immunosurveillance. Taken together, there is strong evidence that thrombin influences cancer progression via multiple mechanisms, including the tumor immune response, with thrombin emerging as a target for novel therapeutic strategies for cancer.


Asunto(s)
Neoplasias , Trombina , Fibrina , Humanos , Inmunidad , Neoplasias/patología , Receptor PAR-1/fisiología , Trombina/farmacología , Microambiente Tumoral
3.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502257

RESUMEN

The catabolic and destructive activity of serine proteases in arthritic joints is well known; however, these enzymes can also signal pain and inflammation in joints. For example, thrombin, trypsin, tryptase, and neutrophil elastase cleave the extracellular N-terminus of a family of G protein-coupled receptors and the remaining tethered ligand sequence then binds to the same receptor to initiate a series of molecular signalling processes. These protease activated receptors (PARs) pervade multiple tissues and cells throughout joints where they have the potential to regulate joint homeostasis. Overall, joint PARs contribute to pain, inflammation, and structural integrity by altering vascular reactivity, nociceptor sensitivity, and tissue remodelling. This review highlights the therapeutic potential of targeting PARs to alleviate the pain and destructive nature of elevated proteases in various arthritic conditions.


Asunto(s)
Artritis/metabolismo , Receptores Proteinasa-Activados/fisiología , Animales , Humanos , Receptor PAR-1/fisiología , Receptor PAR-2/fisiología , Receptores de Trombina/fisiología , Transducción de Señal/fisiología
4.
Cell Death Differ ; 28(2): 780-798, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32968199

RESUMEN

ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) play a vital role in promoting cholesterol efflux. Although, the dysregulation of these transporters was attributed as one of the mechanisms of atherogenesis, what renders their dysfunction is not well explored. Previously, we have reported that thrombin without having any effect on ABCG1 levels depletes ABCA1 levels affecting cholesterol efflux. In this study, we explored the mechanisms underlying thrombin-induced depletion of ABCA1 levels both in macrophages and smooth muscle cells. Under normal physiological conditions, COP9 signalosome subunit 3 (CSN3) was found to exist in complex with ABCA1 and in the presence of proatherogenic stimulants such as thrombin, ABCA1 was phosphorylated and dissociated from CSN3, leading to its degradation. Forced expression of CSN3 inhibited thrombin-induced ABCA1 ubiquitination and degradation, restored cholesterol efflux and suppressed foam cell formation. In Western diet (WD)-fed ApoE-/- mice, CSN3 was also disassociated from ABCA1 otherwise remained as a complex in Chow diet (CD)-fed ApoE-/- mice. Interestingly, depletion of CSN3 levels in WD-fed ApoE-/- mice significantly lowered ABCA1 levels, inhibited cholesterol efflux and intensified foam cell formation exacerbating the lipid laden atherosclerotic plaque formation. Mechanistic studies have revealed the involvement of Par1-Gα12-Pyk2-Gab1-PKCθ signaling in triggering phosphorylation of ABCA1 and its disassociation from CSN3 curtailing cholesterol efflux and amplifying foam cell formation. In addition, although both CSN3 and ABCA1 were found to be colocalized in human non-lesion coronary arteries, their levels were decreased as well as dissociated from each other in advanced atherosclerotic lesions. Together, these observations reveal for the first time an anti-atherogenic role of CSN3 and hence, designing therapeutic drugs protecting its interactions with ABCA1 could be beneficial against atherosclerosis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteínas E/fisiología , Aterosclerosis/patología , Complejo del Señalosoma COP9/metabolismo , Macrófagos Peritoneales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptor PAR-1/fisiología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Complejo del Señalosoma COP9/genética , Colesterol/metabolismo , Dieta Occidental/efectos adversos , Femenino , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Macrófagos Peritoneales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas/genética , Células RAW 264.7 , Transducción de Señal , Trombina/metabolismo
5.
Med Hypotheses ; 143: 110150, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32763660

RESUMEN

COVID-19 due to the SARS-CoV-2 infection is a multi-systemic immune syndrome affecting mainly the lungs, oropharyngeal region, and other vascular endothelial beds. There are tremendous ongoing efforts for the aim of developing drugs against the COVID-19 syndrome-associated inflammation. However, currently no specific medicine is present for the absolute pharmacological cure of COVID-19 mucositis. The re-purposing/re-positioning of already existing drugs is a very important strategy for the management of ongoing pandemy since the development of a new drug needs decades. Apart from altering angiotensin signaling pathways, novel drug candidates for re-purposing comprise medications shall target COVID-19 pathobiology, including pharmaceutical formulations that antagonize proteinase-activated receptors (PARs), mainly PAR-1. Activation of the PAR-1, mediators and hormones impact on the hemostasis, endothelial activation, alveolar epithelial cells and mucosal inflammatory responses which are the essentials of the COVID-19 pathophysiology. In this context, Ankaferd hemostat (Ankaferd Blood Stopper, ABS) which is an already approved hemostatic agent affecting via vital erythroid aggregation and fibrinogen gamma could be a potential topical remedy for the mucosal management of COVID-19. ABS is a clinically safe and effective topical hemostatic agent of plant origin capable of exerting pleiotropic effects on the endothelial cells, angiogenesis, cell proliferation and vascular dynamics. ABS had been approved as a topically applied hemostatic agent for the management of post-surgical/dental bleedings and healing of infected inflammatory mucosal wounds. The anti-inflammatory and proteinase-activated receptor axis properties of ABS with a considerable amount of oestrogenic hormone presence highlight this unique topical hemostatic drug regarding the clinical re-positioning for COVID-19-associated mucositis. Topical ABS as a biological response modifier may lessen SARS-CoV-2 associated microthrombosis, endothelial dysfunction, oropharyngeal inflammation and mucosal lung damage. Moreover, PAR-1 inhibition ability of ABS might be helpful for reducing the initial virus propagation and mocasal spread of COVID-19.


Asunto(s)
Antiinflamatorios/uso terapéutico , Betacoronavirus , Infecciones por Coronavirus/complicaciones , Estrógenos/fisiología , Hemostáticos/uso terapéutico , Mucositis/tratamiento farmacológico , Pandemias , Fitoestrógenos/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Neumonía Viral/complicaciones , Receptor PAR-1/antagonistas & inhibidores , Administración Tópica , Distribución por Edad , Antiinflamatorios/administración & dosificación , COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/fisiopatología , Reposicionamiento de Medicamentos , Endotelio Vascular/efectos de los fármacos , Estrógenos/agonistas , Hemostáticos/administración & dosificación , Humanos , Mucositis/etiología , Fitoestrógenos/administración & dosificación , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Neumonía Viral/sangre , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Receptor PAR-1/fisiología , SARS-CoV-2 , Estomatitis/tratamiento farmacológico , Estomatitis/etiología , Trombofilia/sangre , Trombofilia/etiología , Tratamiento Farmacológico de COVID-19
6.
JCI Insight ; 5(15)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32634127

RESUMEN

Arrestin domain containing 3 (ARRDC3) represents a newly discovered α-arrestin involved in obesity, inflammation, and cancer. Here, we demonstrate a proinflammation role of ARRDC3 in Helicobacter pylori-associated gastritis. Increased ARRDC3 was detected in gastric mucosa of patients and mice infected with H. pylori. ARRDC3 in gastric epithelial cells (GECs) was induced by H. pylori, regulated by ERK and PI3K-AKT pathways in a cagA-dependent manner. Human gastric ARRDC3 correlated with the severity of gastritis, and mouse ARRDC3 from non-BM-derived cells promoted gastric inflammation. This inflammation was characterized by the CXCR2-dependent influx of CD45+CD11b+Ly6C-Ly6G+ neutrophils, whose migration was induced via the ARRDC3-dependent production of CXCL2 by GECs. Importantly, gastric inflammation was attenuated in Arrdc3-/- mice but increased in protease-activated receptor 1-/- (Par1-/-) mice. Mechanistically, ARRDC3 in GECs directly interacted with PAR1 and negatively regulated PAR1 via ARRDC3-mediated lysosomal degradation, which abrogated the suppression of CXCL2 production and following neutrophil chemotaxis by PAR1, thereby contributing to the development of H. pylori-associated gastritis. This study identifies a regulatory network involving H. pylori, GECs, ARRDC3, PAR1, and neutrophils, which collectively exert a proinflammatory effect within the gastric microenvironment. Efforts to inhibit this ARRDC3-dependent pathway may provide valuable strategies in treating of H. pylori-associated gastritis.


Asunto(s)
Arrestinas/metabolismo , Arrestinas/fisiología , Mucosa Gástrica/patología , Gastritis/patología , Infecciones por Helicobacter/complicaciones , Inflamación/patología , Receptor PAR-1/fisiología , Animales , Arrestinas/genética , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Gastritis/metabolismo , Gastritis/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/aislamiento & purificación , Inflamación/metabolismo , Inflamación/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32709711

RESUMEN

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Asunto(s)
Nefropatías Diabéticas/prevención & control , Integrina beta3/fisiología , Podocitos/fisiología , Proteína C/fisiología , Proteína de Unión al GTP rhoA/fisiología , Animales , Citoprotección , Receptor de Proteína C Endotelial/fisiología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Receptor PAR-1/fisiología
8.
Arterioscler Thromb Vasc Biol ; 40(8): 1905-1917, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32580633

RESUMEN

OBJECTIVE: Remodeling of the extracellular matrix plays a vital role in cardiovascular diseases. Using a mouse model of postnatal ascending aortic aneurysms (termed Fbln4SMKO), we have reported that abnormal mechanosensing led to aneurysm formation in Fbln4SMKO with an upregulation of the mechanosensitive transcription factor, Egr1 (Early growth response 1). However, the role of Egr1 and its upstream regulator(s) in the initiation of aneurysm development and their relationship to an aneurysmal microenvironment are unknown. Approach and Results: To investigate the contribution of Egr1 in the aneurysm development, we deleted Egr1 in Fbln4SMKO mice and generated double knockout mice (DKO, Fbln4SMKO; Egr1-/-). Aneurysms were prevented in DKO mice (42.8%) and Fbln4SMKO; Egr1+/- mice (26%). Ingenuity Pathway Analysis identified PAR1 (protease-activated receptor 1) as a potential Egr1 upstream gene. Protein and transcript levels of PAR1 were highly increased in Fbln4SMKO aortas at postnatal day 1 before aneurysm formed, together with active thrombin and MMP (matrix metalloproteinase)-9, both of which serve as a PAR1 activator. Concordantly, protein levels of PAR1, Egr1, and thrombin were significantly increased in human thoracic aortic aneurysms. In vitro cyclic stretch assays (1.0 Hz, 20% strain, 8 hours) using mouse primary vascular smooth muscle cells induced marked expression of PAR1 and secretion of prothrombin in response to mechanical stretch. Thrombin was sufficient to induce Egr1 expression in a PAR1-dependent manner. CONCLUSIONS: We propose that thrombin, MMP-9, and mechanical stimuli in the Fbln4SMKO aorta activate PAR1, leading to the upregulation of Egr1 and initiation of ascending aortic aneurysms.


Asunto(s)
Aneurisma de la Aorta Torácica/etiología , Proteína 1 de la Respuesta de Crecimiento Precoz/fisiología , Proteínas de la Matriz Extracelular/fisiología , Receptor PAR-1/fisiología , Anciano , Anciano de 80 o más Años , Animales , Proteínas de la Matriz Extracelular/deficiencia , Femenino , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/fisiología , Ratones , Persona de Mediana Edad , Receptor PAR-1/antagonistas & inhibidores , Estrés Mecánico , Trombina/farmacología
9.
J Neurosci ; 40(7): 1483-1500, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31911460

RESUMEN

Myelin loss limits neurological recovery and myelin regeneration and is critical for restoration of function. We recently discovered that global knock-out of the thrombin receptor, also known as Protease Activated Receptor 1 (PAR1), accelerates myelin development. Here we demonstrate that knocking out PAR1 also promotes myelin regeneration. Outcomes in two unique models of myelin injury and repair, that is lysolecithin or cuprizone-mediated demyelination, showed that PAR1 knock-out in male mice improves replenishment of myelinating cells and remyelinated nerve fibers and slows early axon damage. Improvements in myelin regeneration in PAR1 knock-out mice occurred in tandem with a skewing of reactive astrocyte signatures toward a prorepair phenotype. In cell culture, the promyelinating effects of PAR1 loss of function are consistent with possible direct effects on the myelinating potential of oligodendrocyte progenitor cells (OPCs), in addition to OPC-indirect effects involving enhanced astrocyte expression of promyelinating factors, such as BDNF. These findings highlight previously unrecognized roles of PAR1 in myelin regeneration, including integrated actions across the oligodendrocyte and astroglial compartments that are at least partially mechanistically linked to the powerful BDNF-TrkB neurotrophic signaling system. Altogether, findings suggest PAR1 may be a therapeutically tractable target for demyelinating disorders of the CNS.SIGNIFICANCE STATEMENT Replacement of oligodendroglia and myelin regeneration holds tremendous potential to improve function across neurological conditions. Here we demonstrate Protease Activated Receptor 1 (PAR1) is an important regulator of the capacity for myelin regeneration across two experimental murine models of myelin injury. PAR1 is a G-protein-coupled receptor densely expressed in the CNS, however there is limited information regarding its physiological roles in health and disease. Using a combination of PAR1 knock-out mice, oligodendrocyte monocultures and oligodendrocyte-astrocyte cocultures, we demonstrate blocking PAR1 improves myelin production by a mechanism related to effects across glial compartments and linked in part to regulatory actions toward growth factors such as BDNF. These findings set the stage for development of new clinically relevant myelin regeneration strategies.


Asunto(s)
Enfermedades Desmielinizantes/fisiopatología , Regeneración Nerviosa/efectos de los fármacos , Receptor PAR-1/antagonistas & inhibidores , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Axones/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/farmacología , Quelantes/toxicidad , Técnicas de Cocultivo , Cobre , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Perfilación de la Expresión Génica , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/patología , Receptor PAR-1/deficiencia , Receptor PAR-1/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología
10.
Cancer Res ; 79(13): 3417-3430, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048498

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with robust activity of the coagulation system. To determine mechanisms by which clotting factors influence PDAC tumor progression, we generated and characterized C57Bl/6-derived KPC (KRasG12D, TRP53R172H ) cell lines. Tissue factor (TF) and protease-activated receptor-1 (PAR-1) were highly expressed in primary KPC pancreatic lesions and KPC cell lines similar to expression profiles observed in biopsies of patients with PDAC. In allograft studies, tumor growth and metastatic potential were significantly diminished by depletion of TF or Par-1 in cancer cells or by genetic or pharmacologic reduction of the coagulation zymogen prothrombin in mice. Notably, PAR-1-deleted KPC cells (KPC-Par-1KO) failed to generate sizable tumors, a phenotype completely rescued by restoration of Par-1 expression. Expression profiling of KPC and KPC-Par-1KO cells indicated that thrombin-PAR-1 signaling significantly altered immune regulation pathways. Accordingly, KPC-Par-1KO cells failed to form tumors in immune-competent mice but displayed robust tumor growth comparable to that observed with control KPC cells in immune-compromised NSG mice. Immune cell depletion studies indicated that CD8 T cells, but not CD4 cells or natural killer cells, mediated elimination of KPC-Par-1KO tumor cells in C57Bl/6 mice. These results demonstrate that PDAC is driven by activation of the coagulation system through tumor cell-derived TF, circulating prothrombin, and tumor cell-derived PAR-1 and further indicate that one key mechanism of thrombin/PAR-1-mediated tumor growth is suppression of antitumor immunity in the tumor microenvironment. SIGNIFICANCE: The tissue factor-thrombin-PAR-1 signaling axis in tumor cells promotes PDAC growth and disease progression with one key mechanism being suppression of antitumor immunity in the microenvironment.


Asunto(s)
Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Evasión Inmune/inmunología , Neoplasias Pancreáticas/patología , Receptor PAR-1/fisiología , Trombina/metabolismo , Microambiente Tumoral/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Animales , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Células Tumorales Cultivadas
11.
J Cell Mol Med ; 23(2): 1268-1279, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30485646

RESUMEN

End-stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease-activated receptor (PAR)-1, which recently emerged as an inducer of epithelial-to-mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR-1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR-1-deficient mice during unilateral ureter obstruction (UUO) and that PAR-1-deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild-type and PAR-1-deficient mice suggesting that diminished fibrosis in PAR-1-deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR-1-deficient animals which were accompanied by diminished production of MCP-1 and TGF-ß. Overall, we thus show that PAR-1 drives EMT of TECs in vitro and aggravates UUO-induced renal fibrosis although this is likely due to PAR-1-dependent pro-fibrotic cytokine production rather than EMT.


Asunto(s)
Lesión Renal Aguda/etiología , Fibrosis/etiología , Enfermedades Renales/fisiopatología , Nefritis Intersticial/etiología , Receptor PAR-1/fisiología , Obstrucción Ureteral/complicaciones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Enfermedad Crónica , Transición Epitelial-Mesenquimal , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nefritis Intersticial/metabolismo , Nefritis Intersticial/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
12.
J Biol Chem ; 293(27): 10574-10589, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29777060

RESUMEN

Although signaling of thrombin via its receptor protease-activated receptor 1 (Par1) is known to occur in atherothrombosis, its link to the actual pathogenesis of this condition is less clear. To better understand the role of thrombin-Par1 signaling in atherosclerosis, here we have studied their effects on cellular cholesterol efflux in mice. We found that by activating Par1 and cullin 3-mediated ubiquitination and degradation of ABC subfamily A member 1 (ABCA1), thrombin inhibits cholesterol efflux in both murine macrophages and smooth muscle cells. Moreover, disruption of the Par1 gene rescued ABCA1 from Western diet-induced ubiquitination and degradation and restored cholesterol efflux in apolipoprotein E-deficient (ApoE-/-) mice. Similarly, the Par1 deletion diminished diet-induced atherosclerotic lesions in the ApoE-/- mice. These observations for the first time indicate a role for thrombin-Par1 signaling in the pathogenesis of diet-induced atherosclerosis. We identify cullin 3 as a cullin-RING ubiquitin E3 ligase that mediates ABCA1 ubiquitination and degradation and thereby inhibits cholesterol efflux. Furthermore, compared with peripheral blood mononuclear cells (PBMCs) from ApoE-/- mice, the PBMCs from ApoE-/-:Par1-/- mice exhibited decreased trafficking to inflamed arteries of Western diet-fed ApoE-/- mice. This finding suggested that besides inhibiting cholesterol efflux, thrombin-Par1 signaling also plays a role in the recruitment of leukocytes during diet-induced atherogenesis. Based on these findings, we conclude that thrombin-Par1 signaling appears to contribute to the pathogenesis of atherosclerosis by impairing cholesterol efflux from cells and by recruiting leukocytes to arteries.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Apolipoproteínas E/fisiología , Aterosclerosis/patología , Colesterol/metabolismo , Proteínas Cullin/metabolismo , Macrófagos Peritoneales/metabolismo , Receptor PAR-1/fisiología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Células Cultivadas , Proteínas Cullin/genética , Dieta Occidental/efectos adversos , Femenino , Macrófagos Peritoneales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Trombina/metabolismo
13.
Transl Res ; 195: 1-12, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29274308

RESUMEN

It is assumed that platelets in diseased conditions share similar properties to platelets in healthy conditions, although this has never been examined in detail for myocardial infarction (MI). We examined platelets from patients with ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI) compared with platelets from healthy volunteers to evaluate for differences in platelet phenotype and function. Platelet activation was examined and postreceptor signal transduction pathways were assessed. Platelet-derived plasma biomarkers were evaluated by receiver operator characteristic curve analysis. Maximum platelet activation through the thromboxane receptor was greater in STEMI than in NSTEMI but less through protease-activated receptor 1. Extracellular-signal related-kinase 5 activation, which can activate platelets, was increased in platelets from subjects with STEMI and especially in platelets from patients with NSTEMI. Matrix metalloproteinase 9 (MMP9) protein content and enzymatic activity were several-fold greater in platelets with MI than in control. Mean plasma MMP9 concentration in patients with MI distinguished between STEMI and NSTEMI (area under curve [AUC] 75% [confidence interval (CI) 60-91], P = 0.006) which was superior to troponin T (AUC 66% [CI 48-85, P = 0.08), predicting STEMI with 80% sensitivity (95% CI 56-94), 90% specificity (CI 68-99), 70% AUC (CI 54-86, P < 0.0001), and NSTEMI with 50% sensitivity (CI 27-70), 90% specificity (CI 68-99), 70% AUC (CI 54-86, P = 0.03). Platelets from patients with STEMI and NSTEMI show differences in platelet surface receptor activation and postreceptor signal transduction, suggesting the healthy platelet phenotype in which antiplatelet agents are often evaluated in preclinical studies is different from platelets in patients with MI.


Asunto(s)
Plaquetas/fisiología , Infarto del Miocardio/sangre , Infarto del Miocardio con Elevación del ST/sangre , Anciano , Femenino , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Persona de Mediana Edad , Fenotipo , Receptor PAR-1/fisiología , Receptores Purinérgicos P2Y12/fisiología
14.
Arterioscler Thromb Vasc Biol ; 37(10): 1891-1902, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28818855

RESUMEN

OBJECTIVE: Thrombin is the key serine protease of the coagulation cascade and mediates cellular responses by activation of PARs (protease-activated receptors). The predominant thrombin receptor is PAR1, and in endothelial cells (ECs), thrombin dynamically regulates a plethora of phosphorylation events. However, it has remained unclear whether thrombin signaling is exclusively mediated through PAR1. Furthermore, mechanistic insight into activation and inhibition of PAR1-mediated EC signaling is lacking. In addition, signaling networks of biased PAR1 activation after differential cleavage of the PAR1 N terminus have remained an unresolved issue. APPROACH AND RESULTS: Here, we used a quantitative phosphoproteomics approach to show that classical and peptide activation of PAR1 induce highly similar signaling, that low thrombin concentrations initiate only limited phosphoregulation, and that the PAR1 inhibitors vorapaxar and parmodulin-2 demonstrate distinct antagonistic properties. Subsequent analysis of the thrombin-regulated phosphosites in the presence of PAR1 inhibitors revealed that biased activation of PAR1 is not solely linked to a specific G-protein downstream of PAR1. In addition, we showed that only the canonical thrombin PAR1 tethered ligand induces extensive early phosphoregulation in ECs. CONCLUSIONS: Our study provides detailed insight in the signaling mechanisms downstream of PAR1. Our data demonstrate that thrombin-induced EC phosphoregulation is mediated exclusively through PAR1, that thrombin and thrombin-tethered ligand peptide induce similar phosphoregulation, and that only canonical PAR1 cleavage by thrombin generates a tethered ligand that potently induces early signaling. Furthermore, platelet PAR1 inhibitors directly affect EC signaling, indicating that it will be a challenge to design a PAR1 antagonist that will target only those pathways responsible for tissue pathology.


Asunto(s)
Células Endoteliales/fisiología , Receptor PAR-1/antagonistas & inhibidores , Receptor PAR-1/fisiología , Humanos , Lactonas/farmacología , Fosforilación , Proteómica , Piridinas/farmacología , Transducción de Señal
15.
Curr Opin Anaesthesiol ; 30(5): 527-533, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28719459

RESUMEN

PURPOSE OF REVIEW: Management of coagulation in neurosurgical procedures is challenging. In this contest, it is imperative to avoid further intracranial bleeding. Perioperative bleeding can be associated with a number of factors, including anticoagulant drugs and coagulation status but is also linked to the characteristic and the site of the intracranial disorder. The aim of this review will be to focus primarily on the new evidence regarding the management of coagulation in patients undergoing craniotomy for neurosurgical procedures. RECENT FINDINGS: Antihemostatic and anticoagulant drugs have shown to be associated with perioperative bleeding. On the other hand, an increased risk of venous thromboembolism and hypercoagulative state after elective and emergency neurosurgery, in particular after brain tumor surgery, has been described in several patients. To balance the risk between thrombosis and bleeding, it is important to be familiar with the perioperative changes in coagulation and with the recent management guidelines for anticoagulated patients undergoing neurosurgical procedures, in particular for those taking new direct anticoagulants. We have considered the current clinical trials and literature regarding both safety and efficacy of deep venous thrombosis prophylaxis in the neurosurgical population. These were mainly trials concerning both elective surgical and intensive care patients with a poor grade intracranial bleed or multiple traumas with an associated severe traumatic brain injury (TBI). SUMMARY: Coagulation management remains a major issue in patients undergoing neurosurgical procedures. However, in this field of research, literature quality is poor and further studies are necessary to identify the best strategies to minimize risks in this group of patients.


Asunto(s)
Coagulación Sanguínea , Procedimientos Neuroquirúrgicos , Animales , Anticoagulantes/uso terapéutico , Lesiones Traumáticas del Encéfalo/cirugía , Craneotomía , Humanos , Receptor PAR-1/fisiología , Tromboelastografía , Tromboembolia Venosa/prevención & control
16.
Thromb Haemost ; 117(7): 1391-1401, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28569922

RESUMEN

Heparanase, known to be involved in angiogenesis and metastasis, was shown to form a complex with tissue factor (TF) and to enhance the generation of factor Xa. Platelets and granulocytes contain abundant amounts of heparanase that may enhance the coagulation system upon discharge. It was the aim of this study to identify the inducer and pathway of heparanase release from these cells. Platelets and granulocytes were purified from pooled normal plasma and were incubated with ATP, ADP, epinephrine, collagen, ristocetin, arachidonic acid, serotonin, LPS and thrombin. Heparanase levels were assessed by ELISA, heparanase procoagulant activity assay and western blot analysis. The effects of selective protease-activated receptor (PAR)-1 and 2 inhibitors and PAR-1 and 4 activators were studied. An in-house synthesised inhibitory peptide to heparanase was used to evaluate platelet heparanase involvement in activation of the coagulation system. Heparanase was released from platelets only by thrombin induction while other inducers exerted no such effect. The heparanase level in a platelet was found to be 40 % higher than in a granulocyte. Heparanase released from platelets or granulocytes increased factor Xa generation by three-fold. PAR-1 activation via ERK intracellular pathway was found to induce heparanase release. In conclusion, heparanase is selectively released from platelets and granulocytes by thrombin interacting with PAR-1. Heparanase derived from platelets and granulocytes is involved in activation of the extrinsic coagulation pathway. The present study implies on a potential anticoagulant effect, in addition to anti-platelet effect, of the new clinically studied PAR-1 inhibitors.


Asunto(s)
Plaquetas/fisiología , Glucuronidasa/sangre , Granulocitos/fisiología , Receptor PAR-1/fisiología , Trombina/fisiología , Plaquetas/efectos de los fármacos , Granulocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas , Receptor PAR-2/sangre , Receptores de Trombina/sangre , Trombina/farmacología
17.
J Pharmacol Sci ; 131(3): 162-71, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27426918

RESUMEN

Thrombin-activated protease-activated receptor (PAR)-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs) derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP) SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs.


Asunto(s)
Proliferación Celular/fisiología , Giro Dentado/citología , Células-Madre Neurales/química , Receptor PAR-1/fisiología , Animales , Diferenciación Celular , Indazoles/farmacología , Masculino , Ratones , Neurogénesis/efectos de los fármacos , Receptor PAR-1/antagonistas & inhibidores , Urea/análogos & derivados , Urea/farmacología
18.
Artículo en Japonés | MEDLINE | ID: mdl-27212596

RESUMEN

Development of acute experimental autoimmune encephalomyelitis (EAE) depends on Th17 cells expressing the nuclear factor NR4A2, which we have previously reported to be upregulated in peripheral blood T cells from patients of multiple sclerosis (MS). EAE induced in mice lacking NR4A2 in T cells showed a great reduction in Th17-mediated acute symptoms, whereas a late-onset disease independent of NR4A2 was still inducible. We identified cytotoxic T-cell-like CD4+ T cells expressing the T-box transcription factor Eomesodermin (Eomes) as a pathogenic component for the development of the late-onset disease. Furthermore, T cell-specific deletion of the Eomes gene or Eomes-specific RNA interference in vivo remarkably ameliorated the late-onset EAE. Intriguingly, similar Eomes-expressing CD4+ T cells are increased in the peripheral blood and cerebrospinal fluid only from patients with secondary-progressive MS accompanied by neurodegenerative symptoms, but not in relapsing-remitting MS. Mechanistic analysis revealed that granzyme B was secreted by Eomes-expressing CD4+ T cells and the activation of protease-activated receptor-1 by granzyme B is involved in the neuroinflammation observed in the late-onset EAE.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva/etiología , Proteínas de Dominio T Box , Linfocitos T Colaboradores-Inductores , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Granzimas/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple Crónica Progresiva/genética , Esclerosis Múltiple Crónica Progresiva/patología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Receptor PAR-1/fisiología , Células Th17
19.
Oncogene ; 35(12): 1529-40, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26165842

RESUMEN

As the majority of patients with basal-like breast carcinoma present with invasive, metastatic disease that do not respond to available therapies, it is essential to identify new therapeutic targets that impact invasion and metastasis. Protease-activated receptor 1 (PAR1), a G-protein coupled receptor has been shown to act as an oncogene, but underlying mechanisms are not well understood. Here, we show that ectopic expression of functionally active PAR1 in MCF-7 cells induced a hormone-refractory, invasive phenotype representative of advanced basal-like breast carcinoma that readily formed metastatic lesions in lungs of mice. PAR1 was found to globally upregulate mesenchymal markers, including vimentin, a direct target of PAR1, and downregulate the epithelial markers including E-cadherin, as well as estrogen receptor. In contrast, non-signaling PAR1 mutant receptor did not lead to an invasive, hormone refractory phenotype. PAR1 expression increased spheroid formation and the level of stemness markers and self-renewal capacity in human breast cancer cells. We identified HMGA2 (high mobility group A2) as an important regulator of PAR1-mediated invasion. Inhibition of PAR1 signaling suppresses HMGA2-driven invasion in breast cancer cells. HMGA2 gene and protein are highly expressed in metastatic breast cancer cells. Overall, our results show that PAR1/HMGA2 pathway may present a novel therapeutic target.


Asunto(s)
Neoplasias de la Mama/patología , Proteína HMGA2/fisiología , Metástasis de la Neoplasia/fisiopatología , Receptor PAR-1/fisiología , Femenino , Humanos , Células MCF-7 , Fenotipo , Vimentina/metabolismo
20.
Cancer Res ; 75(19): 4235-43, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26238780

RESUMEN

Thrombin-mediated proteolysis is a major determinant of metastasis, but is not universally important for primary tumor growth. Here, we report that colorectal adenocarcinoma represents one important exception whereby thrombin-mediated functions support both primary tumor growth and metastasis. In contrast with studies of multiple nongastrointestinal cancers, we found that the growth of primary tumors formed by murine and human colon cancer cells was reduced in mice by genetic or pharmacologic reduction of circulating prothrombin. Reduced prothrombin expression was associated with lower mitotic indices and invasion of surrounding tissue. Mechanistic investigations revealed that thrombin-driven colonic adenocarcinoma growth relied upon at least two targets of thrombin-mediated proteolysis, protease-activated receptor-1 (PAR-1) expressed by stromal cells and the extracellular matrix protein, fibrinogen. Colonic adenocarcinoma growth was reduced in PAR-1-deficient mice, implicating stromal cell-associated PAR-1 as one thrombin target important for tumor outgrowth. Furthermore, tumor growth was dramatically impeded in fibrinogen-deficient mice, offering the first direct evidence of a critical functional role for fibrinogen in malignant tumor growth. Tumors harvested from fibrinogen-deficient mice displayed a relative reduction in cell proliferative indices, as well as increased tumor necrosis and decreased tumor vascular density. Collectively, our findings established a functional role for thrombin and its targets PAR-1 and fibrinogen in the pathogenesis of colonic adenocarcinoma, supporting tumor growth as well as local invasion and metastasis.


Asunto(s)
Adenocarcinoma/patología , Neoplasias del Colon/patología , Fibrinógeno/fisiología , Receptor PAR-1/fisiología , Trombina/fisiología , Adenocarcinoma/irrigación sanguínea , Adenocarcinoma/metabolismo , Afibrinogenemia/complicaciones , Afibrinogenemia/genética , Animales , División Celular , Línea Celular Tumoral , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/metabolismo , Progresión de la Enfermedad , Femenino , Células HCT116/trasplante , Xenoinjertos , Humanos , Masculino , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Invasividad Neoplásica , Neovascularización Patológica/fisiopatología , Protrombina/análisis , Receptor PAR-1/deficiencia , Células del Estroma/metabolismo , Trombina/deficiencia , Carga Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...